233
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Microbially Induced Anoxia on Cr(VI) Mobility at a Site Contaminated with Hyperalkaline Residue from Chromite Ore Processing

, , , &
Pages 68-82 | Received 22 Apr 2010, Accepted 25 May 2010, Published online: 07 Jan 2011
 

Abstract

This paper reports an investigation of microbially mediated Cr(VI) reduction in a hyperalkaline, chromium-contaminated soil-water system representative of the conditions at a chromite ore processing residue (COPR) site. Soil from the former surface layer that has been buried beneath a COPR tip for over 100 years was shown to have an active microbial population despite a pH value of 10.5. This microbial population was able to reduce nitrate using an electron donor(s) that was probably derived from the soil organic matter. With the addition of acetate, nitrate reduction was followed in turn by removal of aqueous Cr(VI) from solution, and then iron reduction. Removal of 300 μM aqueous Cr(VI) from solution was microbially mediated, probably by reductive precipitation, and occured over a few months. Thus, in soil that has had time to acclimatize to the prevailing pH value and Cr(VI) concentration, microbially mediated Cr(VI) reduction can be stimulated at a pH of 10.5 on a time scale compatible with engineering intervention at COPR-contaminated sites.

ACKNOWLEDGMENTS

RAW would like to acknowledge his funding from a John Henry Garner Scholarship at the University of Leeds. The authors would also like to thank Dr Phil Studds and Mark Bell, Ramboll UK, for help enabling the field work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.