227
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Activated Carbon Addition on the Conventional and Electrochemical Bioleaching of Chalcopyrite Concentrates

, &
Pages 237-244 | Received 01 Sep 2011, Accepted 01 Jan 2012, Published online: 10 Jan 2013
 

Abstract

The effect of activated carbon addition on the rate and efficiency of copper mobilization from Sarcheshmeh chalcopyrite concentrate was studied in the presence and absence of a mixed culture of moderately thermophilic microorganisms. Conventional leaching at a 10% (w/v) pulp density in 500-ml Erlenmeyer flasks on a rotary shaker at 150 rpm, and electrochemical bioleaching in a stirred bioreactor at an ORP (oxidation-reduction potential) range of 400 to 430 mV measured against a Ag/AgCl reference electrode. The bioreactor contained ore concentrate at a pulp density of 20%, which was stirred at 600 rpm.  All experiments were conducted in the presence and absence of 3 g/L activated carbon, at initial pH 1.5, temperature 50°C, in Norris's nutrient medium with an addition of 0.02% (w/v) yeast extract. The results showed that the addition of activated carbon increased the rate and yield of copper extraction from the concentrate especially in the presence of bacteria. Final recovery after 20 days was 52% and 44% in the shake flask experiments with and without carbon addition, respectively. Enhanced rates of copper mobilization were achieved in the electrochemical bioleaching experiments in which copper was leached selectively relative to iron. Final copper recovery after 10 days was 85% and 77% in the presence and absence of activated carbon, respectively. The positive effect of activated carbon on copper extraction could be related to the galvanic interaction between the inert carbon as cathode and chalcopyrite as anode. The bacterial elimination of sulfur produced on the sulfide minerals during chemical leaching is assumed to intensify the galvanic interaction. It seems that maintaining the ORP at a low potential and efficient mixing improves the bacterial and chemical subsystems in the electro-bioreactor that accelerates the rate of copper mobilization from the concentrate.

Acknowledgments

The National Iranian Copper Industries Company (NICICO) is acknowledged for financial support of a part of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.