187
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Intra-habitat Differences in the Composition of the Methanogenic Archaeal Community between the Microcystis-Dominated and the Macrophyte-Dominated Bays in Taihu Lake

&
Pages 907-916 | Received 01 Aug 2012, Accepted 01 Oct 2012, Published online: 10 Oct 2014
 

Abstract

A regime shift between a macrophyte-dominated clear state and a phytoplankton-dominated turbid state can have considerable impact on ecosystem structure and function of shallow lakes. However, very little is known about the response of the methanogenic archaeal community in the sediment during this regime shift. We investigated the methanogenic archaeal community at two sites in the large, shallow, eutrophic Taihu Lake over the course of one year. One site is located in Meiliang Bay and is dominated by Microcystis blooms, and the other site is located in East Taihu Bay and is dominated by aquatic macrophytes. Terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analyses of archaeal 16S rRNA genes were used to analyze the methanogenic community. Higher ratio of methanogens in Archaea was observed in East Taihu Bay than in Meiliang Bay. The methanogenic archaeal community was dominated by the Methanobacteriales and the LDS cluster in macrophytes-dominated East Taihu Bay, while it was dominated by the Methanosarcinaceae, Methanobacteriales, and the LDS cluster in Microcystis-dominated Meiliang Bay. Clustering analysis of all of the samples revealed differences in the composition of the methanogenic archaeal communities between the two sites that were independent of seasonal variations. Further statistical analysis indicated that the chlorophyll a (Chla) concentration had a profound impact on the composition of the methanogenic archaeal community in Meiliang Bay, whereas it was primarily influenced by total organic carbon (TOC) levels in East Taihu Bay. Overall, this investigation demonstrates that intra-habitat differences in the composition of methanogenic archaeal communities are likely driven by changes in the available organic materials.

Additional information

Funding

This work was supported by the NSFC project (31225004 and U1202231).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.