633
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Biostabilization of Desert Sands Using Bacterially Induced Calcite Precipitation

, , , , , , & show all
Pages 243-249 | Received 12 May 2015, Accepted 13 May 2015, Published online: 25 Feb 2016
 

ABSTRACT

Sand storms have become a growing global environmental issue and there is an urgent need to explore cost-effective green technologies to stabilize the sands of desert regions. In this study, the performance of a ureolytic Bacillus sp. for stabilization of sands was evaluated. The Bacillus sp. could efficiently consolidate sand particles by hydrolysis of urea and the subsequent production of calcite and aragonite minerals. The biostabilized sands had a high resistance to erosion by a 33 m s−1 wind speed even after 12-d exposure to freeze-thaw cycles. The compressive strength of biostabilized sands was dependent on the applied cell density and concentrations of Ca2+ and urea. High cell densities, urea and Ca2+ concentrations reduced the compressive strength. The optimal cell density, Ca2+ and urea concentrations were OD600 0.4, 15 mM and 20 g L−1, respectively, when performance and cost were considered. This study shows that biostabilization of sand based on microbially induced carbonate precipitation (MICP) has potential for the prevention of sand storms and wind erosion of soil.

Funding

This work was supported by National Natural Science Foundation of China (U1120302, U1403181 and 21177127). Partial funding for this research was also received from the Visiting Professor Program at King Saud University, Riyadh, Saudi Arabia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.