182
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Thermoviscoelastic Dynamic Behavior of a Double-Layered Hollow Cylinder Under Thermal Shocking

, &
Pages 934-958 | Received 15 Sep 2014, Accepted 29 Oct 2014, Published online: 01 Jun 2015
 

Abstract

In this article, thermoviscoelastic dynamic behavior of a double-layered cylinder with a thermal barrier coating under radially symmetric mechanic and thermal loadings is investigated. The double-layered hollow cylinder is constructed of a viscoelastic layer and a homogenous layer, and the cylinder is subjected to thermal shocking. The material parameters of the cylinder are assumed to be temperature-dependent. The governing equation of the motion of the double-layered hollow cylinder under both dynamic mechanical and thermal loads is obtained based on the plane-stain theory, meanwhile, the transient heat transfer problems are solved by the finite difference method (FDM), Newmark method (NM), and iterative method. Numerical results show that mechanical load, boundary conditions, temperature field and whether considering the viscoelasticity of the inner layer each have a great influence on the dynamic behavior of the double-layered hollow cylinder.

ACKNOWLEDGMENTS

The authors wish to thank reviewers for their valuable comments.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uths.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 694.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.