349
Views
79
CrossRef citations to date
0
Altmetric
Original Articles

Partitioning Behavior of Penicillin G in Aqueous Two Phase System Formed by Ionic Liquids and Phosphate

, , , , , & show all
Pages 2849-2858 | Received 20 Jan 2006, Accepted 27 Mar 2006, Published online: 26 Dec 2007
 

Abstract

An aqueous two‐phase system (ATPS) was presented with hydrophilic ionic liquid 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) and NaH2PO4 aqueous solution in this paper. The partitioning behavior of penicillin G in the ATPS was investigated. Concentrations of NaH2PO4, penicillin G, and [Bmim]Cl were evaluated to determine their effects on the partition coefficient and extraction yield of penicillin G. It was found that both of partition coefficient and extraction yield strongly depended on the concentration of [Bmim]Cl, penicillin and NaH2PO4. A high extraction yield of 93% was achieved with the following parameters: NaH2PO4 · 2H2O 40% (wt%), penicillin 45000∼50000 u/ml, [Bmim]Cl 20∼21% (wt%). The [Bmim]Cl/NaH2PO4 system was also applied in a real filtration of penicillin G fermentation broth and the extraction yield was averaged at 91.5%. It is worthy noting that the working pH value of ATPS was at the range of 5∼6, no emulsification and protein denaturation could be observed.

Acknowledgements

This work was financially supported by Creative Research Group (No. 20221603) and National Nature Science Foundation of China (No. 204490200).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.