67
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

High Throughput Determination and QSER Modeling of Displacer DC‐50 Values for Ion Exchange Systems

, , , &
Pages 3079-3107 | Received 26 Oct 2005, Accepted 01 May 2006, Published online: 15 Feb 2007
 

Abstract

In this paper, the displacer concentration required to displace 50% of proteins bound in batch adsorption systems, DC‐50, was employed as a means of ranking high‐affinity, low molecular weight displacers for ion‐exchange systems. A relatively large data set of cationic displacers with varying chemistries were evaluated with two proteins on two strong cation exchange resins in parallel batch screening experiments. Using this methodology, a significant number of high affinity displacers were identified that could displace both proteins at relatively low concentrations. In addition, the DC‐50 data was used in concert with molecular structural information of the displacers to produce predictive quantitative structure‐efficacy relationship (QSER) models based on a support vector machine (SVM) regression approach. The resulting models were well correlated and the predictive power of these models was demonstrated. Examination of the features selected in these models provided insight into the factors influencing displacer efficacy in cation exchange systems. These results demonstrate the utility of a combined DC‐50/QSER approach to identify and design high‐affinity displacers for ion‐exchange displacement chromatography.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.