436
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Selective Extraction of Minor Actinides from Acidic Media Using Symmetric and Asymmetric Dithiophosphinic Acids

, , , , , & show all
Pages 1711-1717 | Received 02 Nov 2009, Accepted 26 Apr 2010, Published online: 30 Aug 2010
 

Abstract

The minor actinides (Am and Cm) and other transplutonium elements represent significant, long-term hazards found in spent nuclear fuel. The selective extraction of the minor actinides from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the minor actinides to be fabricated into a target and recycled to a reactor and the lanthanides to be disposed. Due to the similarities in the chemical properties of the trivalent actinides and lanthanides, this separation is difficult to accomplish. The introduction of soft donor groups, such as N or S, into similarly structured ligands increases the differentiation between An(III) and Ln(III) cation coordination. Partly because of limitations imposed by synthetic methodologies, previous studies of dithiophosphinic acid (DPAH) extractants has been restricted to a comparatively small number of symmetrical dialkyl and diaryl derivatives. Research efforts at the Idaho National Laboratory have resulted in the recent development of an innovative synthetic pathway yielding new regiospecific DPAH extractants. The synthesis improves DPAH designs that can address the issues concerning minor actinide separation efficiency and extractant stability. Several new symmetric and asymmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed. In addition, the variation in the extent of Am(III) extraction by a related series of DPAH isomers will be presented.

ACKNOWLEDGEMENTS

This work was supported by the United States Department of Energy and the Laboratory Directed Research and Development (LDRD) program at the Idaho National Laboratory (INL) through contract DE-AC07-05ID14517.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.