290
Views
9
CrossRef citations to date
0
Altmetric
BIOMASS SEPARATIONS

Systematic Isolation and Utilization of Lignocellulosic Components from Sugarcane Bagasse

, , , &
Pages 2217-2224 | Received 01 Aug 2012, Accepted 29 Mar 2013, Published online: 02 Aug 2013
 

Abstract

Lignocellulosic constituents as renewable feedstock can be utilized for various applications. A systematic procedure for separation of cellulose and lignin followed by hydrolysis of hemicelluloses was proposed in this study. Sugarcane bagasse was first subjected to alkaline hydrolysis to remove lignin and hemicelluloses. Then cellulose was separated from the alkali pretreatment residue and further purified. Meanwhile, the obtained pre-hydrolysis liquor (PHL) was acidified to precipitate lignin, and the filtrate was hydrolyzed with 1-methylimidazolium hydrogen sulfate ([Hmim]HSO4) to prepare furfural. Response surface methodology (RSM) was employed to determine optimal conditions for isolation of cellulose. The sequential treatments resulted in a total release of over 77.3% of the original cellulose and 84.5% of the original lignin. In particular, 7.5% yield of furfural was obtained. The structures of the isolated cellulose and lignin were elucidated with Fourier transform infrared spectroscopy (FT-IR).

ACKNOWLEDGEMENTS

The study was supported by the National Natural Science Foundation of China (No.81102344).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.