661
Views
6
CrossRef citations to date
0
Altmetric
Theory and Methods

Efficient Functional ANOVA Through Wavelet-Domain Markov Groves

&
Pages 802-818 | Received 01 Mar 2016, Published online: 06 Jun 2018
 

ABSTRACT

We introduce a wavelet-domain method for functional analysis of variance (fANOVA). It is based on a Bayesian hierarchical model that employs a graphical hyperprior in the form of a Markov grove (MG)—that is, a collection of Markov trees—for linking the presence/absence of factor effects at all location-scale combinations, thereby incorporating the natural clustering of factor effects in the wavelet-domain across locations and scales. Inference under the model enjoys both analytical simplicity and computational efficiency. Specifically, the posterior of the full hierarchical model is available in closed form through a pyramid algorithm operationally similar to Mallat’s pyramid algorithm for discrete wavelet transform (DWT), achieving for exact Bayesian inference the same computational efficiency—linear in both the number of observations and the number of locations—as for carrying out the DWT. In particular, posterior probabilities of the presence of factor contributions to functional variation are directly available from the pyramid algorithm, while posterior samples for the factor effects can be drawn directly from the exact posterior through standard (not Markov chain) Monte Carlo. We investigate the performance of our method through extensive simulation and show that it substantially outperforms existing wavelet-domain fANOVA methods in a variety of common settings. We illustrate the method through analyzing the orthosis data. Supplementary materials for this article are available online.

Supplementary Materials

The supplementary materials contain all proofs, additional technical details for the case with multiple factors, additional numerical results, and a sensitivity analysis.

Additional information

Funding

This research is partly supported by NSF grants DMS-1309057, DMS-1612889, and a Google Faculty Research Award.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.