457
Views
98
CrossRef citations to date
0
Altmetric
Original Articles

Nanochemoprevention: Sustained Release of Bioactive Food Components for Cancer Prevention

, , &
Pages 883-890 | Received 13 Mar 2010, Accepted 20 Apr 2010, Published online: 04 Oct 2010
 

Abstract

Chemoprevention, especially through the use of naturally occurring phytochemicals capable of impeding the process of carcinogenesis at one or more steps, is an ideal approach for cancer management. Despite accomplished outcomes in preclinical settings, its applicability to humans has met with limited success for many reasons including inefficient systemic delivery and bioavailability of promising chemopreventive agents. We have recently introduced a novel concept of “nanochemoprevention” that utilizes nanotechnology for enhancing the outcome of chemoprevention (Cancer Res 69, 1712–1716, 2009). To establish the usefulness of nanochemoprevention in cancer management, we studied the efficacy of a well identified chemopreventive agent epigallocatechin-3-gallate (EGCG) encapsulated in polylactic acid (PLA) and polyethylene glycol (PEG) nanoparticles (hereafter referred to as nano-EGCG) in preclinical settings. Nano-EGCG was found to retain its biological effectiveness, with over 10-fold dose advantage compared to nonencapsulated EGCG for exerting its cell growth inhibition, proapoptotic, and angiogenic inhibitory effects. Nano-EGCG was also observed to be effective in inhibiting tumor cell growth in athymic nude mice, with over 10-fold dose advantage compared to nonencapsulated EGCG. The rate of degradation of nonencapsulated EGCG was rapid, with a complete degradation within 4 h, whereas nano-EGCG had a significantly longer half-life. This study provides a foundation for the use of nanoparticle-mediated delivery of natural products to enhance the bioavailability of active agents for their enhanced effective and chemopreventive potential. In doing this, it is hoped that perceived toxicity concerns associated with prolonged use of agents could also be minimized. Oral consumption is the most desirable and acceptable form of delivery of chemopreventive agents. One disadvantage of using PLA-PEG nanoparticles is its unstable nature in acidic environment; and therefore, it is not recommended for oral consumption. To overcome this obstacle, it will be important to develop nanoparticles encapsulating phytochemicals that are suitable for oral consumption.

ACKNOWLEDGMENTS

This work was supported by U.S. PHS Grants RO1 CA 78809, RO1 CA 101039, and RO1 CA 120451. I. A. Siddiqui was supported by a postdoctoral fellowship by U.S. PHS Grant T32AR055893.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.