197
Views
4
CrossRef citations to date
0
Altmetric
Articles

Finite element analysis on the optimal material choice and cavity design parameters for MOD inlays exposed to different force vectors and magnitudes

, , , &
Pages 8-20 | Received 25 Feb 2016, Accepted 26 May 2016, Published online: 05 Jul 2016
 

Abstract

This simulation study evaluated the effect of three different inlay materials (composite, glass ceramic, zirconia), cavity design parameters (isthmus width and depth) and different force vectors and magnitudes on the stress distribution within mesio-occlusal-distal (MOD) inlays and the remaining enamel and dentin. The mechanical performance of inlays was evaluated using 3-D finite element analysis (FEA) method. Three different restoration materials and hard tissues of the restored tooth with different cavity depth (2–5 mm) and width (2–4 mm) were exposed to occlusal loading with different magnitudes from 10 to 130 kg at varying angles between 0° and 15°. The maximum von Mises stresses were calculated for the inlays, tooth structure and bonded surfaces. Response Surface Optimization method was implemented into the finite element software package in order to design cavity shapes with more favourable interfacial stresses for bonded restorations under occlusal loading. Teeth restored with resin composite exhibited the highest von Mises Stress, followed by glass ceramic and zirconia. The increase in isthmus width decreased interfacial shear stresses in zirconia MOD inlay but the increase in cavity depth did not change the stress levels for all three materials. According to mechanical safety factor, inlay and tooth structure remained within the mechanical limits in three parameters (material, magnitude of force, cavity shape) but negatively affected by the force vector.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.