292
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

YIELD, FRUIT QUALITY AND NITROGEN UPTAKE OF ORGANICALLY AND CONVENTIONALLY GROWN MUSKMELON WITH DIFFERENT INPUTS OF NITROGEN, PHOSPHORUS, AND POTASSIUM

, , , &
Pages 130-141 | Received 06 Aug 2007, Accepted 07 Aug 2008, Published online: 07 Dec 2009
 

Abstract

The effects of varied amounts of fertilization on yield, fruit quality, and nitrogen (N) uptake of muskmelons (Cucumis melo L. var reticulatus Naud) grown under both organic and conventional farming conditions were evaluated. Organic fertilizer (0.0, 0.55, 1.1, and 2.2 kg m−2) and mineral fertilizers containing the same amounts of estimated plant available nutrients [N, phosphorus (P), and potassium (K)] were applied to organic and conventional farming plots, respectively, in both the spring and autumn seasons of 2005. In comparison to conventional farming conditions, muskmelons grown under organic farming conditions had the same yield, total soluble solids (TSS) and soluble sugar contents in both growing seasons, and fruit pulp nitrate content was significantly reduced by 12% on average in spring and 16% on average in autumn. At harvest maturity the aboveground plant N concentration was significantly higher in the conventional treatments than in the organic treatments. At the vine growth stage, the plant N concentrations were similar in all treatments in both seasons. The ratios of nitrate N to total N amount in aboveground biomass were higher in conventional and high fertilized organic treatments than in low or not fertilized organic treatments under limited N supply from the soil. Muskmelon plants absorbed mainly inorganic N, and the protein N fraction in the xylem sap was larger than the amino acid N fraction. Plants grown in the organic system had a higher proportion of organic N in their xylem sap, especially when manure input was low.

ACKNOWLEDGMENTS

This work was supported by grants from the China Postdoctoral Science Foundation (No. 2005038436) and the National High Technology Research and Development Program of China (863 Program) (No. 2006AA10Z221).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.