235
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

MODELING GROWTH AND ION CONCENTRATION OF LILIUM IN RESPONSE TO NITROGEN:POTASSIUM:CALCIUM MIXTURE SOLUTIONS

, , , &
Pages 12-26 | Received 21 Aug 2008, Accepted 26 Jul 2009, Published online: 01 Dec 2010
 

Abstract

Nutrient solution composition plays an important role in root uptake rate due to interactions among nutrients and internal regulation. Studies to determine the optimum nutrient solution concentration are focused on individual ions, ignoring the adaptation mechanisms triggered by plants when growing in a varying external nutrient concentration. The objective of the present study was to determine the response in growth and tissue ion concentration of lilium cv. ‘Navona’ to nutrient mixtures of varying proportions of nitrogen (N), potassium (K+), and calcium (Ca2+) in solution using mixture experiments methodology in order to determine the optimum concentration. Bulbs of lilium were transplanted in plastic crates and drip-irrigated with the treatment solutions, which consisted of a mixture of N, K+, and Ca2+ whose total concentration was 340 mg L−1 and minimum concentrations of each ion was 34 mg L−1. Chlorophyll concentration (SPAD), shoot fresh weight (FW), leaf FW, and leaf area were measured 60 days after transplanting and ion analysis was performed on shoot tissues from selected treatments. Lilium exhibited a moderate demand for N and K+ (136–170 mg L−1 N and 116–136 mg L−1 K+) and a very low demand for Ca2+ (34–88 mg · L−1). This low demand may be due to the remobilization of the nutrients stored in the bulbs. Integrating the predictions of the models estimated to produce >90% of maximum growth, the optimum nutrient solution should contain Ca2+ at a concentration between 34 and 126 mg · L−1, K+ between 119 and 211 mg · L−1, and N between 92 mg · L−1 and 211 mg · L−1. Increasing external N concentration affected internal N concentration but not internal K+ or Ca2+ concentrations, despite that the increase in external N was associated with a decrease in external K+ and Ca2+. Similar trends were observed for external K+ and Ca2+ concentration. In conclusion, lilium was able to maintain a relatively constant K+ and Ca2+ concentration regardless of the lower concentration in the nutrient solution when N was increased (similar response was observed for K+ and Ca2+) and it has a low Ca2+ demand and moderate N and K+ supply.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.