253
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Ceramic Aggregate Sorption and Desorption Chemistry: Implications for Use as a Component of Soilless Media

, &
Pages 1345-1357 | Received 25 Oct 2012, Accepted 11 Feb 2013, Published online: 28 May 2014
 

Abstract

Ceramic aggregates (Turface® and Profile®) are common soilless media components, but their sorption/desorption chemistry is poorly understood. We investigated: labile (readily desorb-able or readily plant-available) ion concentrations; the effect of rinsing and soaking pretreatments on labile ions; sorption of applied nutrients; and nutrient uptake from the aggregates by plants. Variability in labile ions was extremely high among bags of aggregates. Manganese, boron, magnesium, calcium, sulfur and potassium were most likely to desorb in excess for plants. Phosphorus, iron, copper and zinc were sorbed by the aggregates; only copper was found nearly deficient in plant tissue. Rinsing and soaking pretreatments adjusted labile ions to more suitable concentrations for plants. However, growth data suggested a worst-case scenario of high levels of labile ions may not be mitigated by these pretreatments. With frequent leaching after planting or where the aggregates are a minor component of media, excessive nutrient uptake would likely be limited.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.