947
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Biochemical aspects of nitrogen use efficiency: An overview

, &
Pages 506-523 | Received 03 Sep 2014, Accepted 10 Nov 2014, Published online: 27 Jan 2017
 

ABSTRACT

Crop productivity relies heavily on nitrogen (N) fertilization. N is an essential macronutrient limiting the growth and development of plants in agriculture. Both organic and inorganic forms of N are metabolized in plants; nitrate and ammonia are common forms of inorganic N that can be metabolized in all plants. In the last 40 years the amount of synthetic N applied to crops has risen dramatically, resulting in significant increases in yield but with considerable impacts on the environment. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. A requirement for crops that require decreased N fertilizer levels has been recognized in the call for a ‘Second Green Revolution’ and research in the field of nitrogen-use efficiency (NUE) has continued to grow. Nitrogen-use efficiency is inherently a complex trait, as each step-including N uptake, translocation, assimilation, and remobilization-is governed by multiple interacting genetic and environmental factors. The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of present cultivars. Decreasing environmental losses and increasing the productivity of crop-acquired N requires the coordination of carbohydrate and N metabolism to give high yields. This has prompted a search to identify genes that improve the NUE of crop plants, with candidate NUE genes existing in pathways relating to N uptake, assimilation, amino acid biosynthesis, carbon (C)/N storage and metabolism, signaling and regulation of N metabolism and translocation, remobilization and senescence. In this review, we present the over view of N metabolism, relation of C/N metabolism and future prospects of improving NUE in crops using various complementary approaches.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.