646
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Pod shattering in canola reduced by mitigating drought stress through silicon application and molecular approaches-A review

, , , , , , , , , , , & show all
Pages 101-128 | Received 12 Jan 2021, Accepted 06 Jan 2022, Published online: 24 Jan 2022
 

Abstract

Climate change has become a serious threat all over the world, which creates a negative impact on the growth, physiology and yield attributes of the crops. Drought stress is one of the major causes of climate change that contributes more to the reduction of yield of crops and its physiological aspects (i.e., stomatal conductance, leaf temperature, plant canopy temperature, membrane thermal stability index, total chlorophyll content, chlorophyll fluorescence). Pod shattering negatively affects the yield of canola under drought stress conditions. The control of shattering, caused by drought, has been difficult due to the lack of resistant cultivars. Drought at any stage of canola, either vegetative or reproductive, badly affects the canola crops in terms of growth, physiology, pod development and its shattering, which results in the reduction of yield. To overcome the pod shattering and its development, the Si plays an important role, which provides the strength to the pod when it was applied with their proper amount and proper time. Si is the beneficial element which helps in improving the growth and physiology of crop under drought stress conditions. Si helps for reducing the pod shattering in canola and improving its yield by mitigating the adverse effect of drought on canola. Molecular approaches also help to provide resistance in canola against pod shattering and improve its yield under drought stress conditions. Current review highlights the role of Si and current molecular developments to deal with constraints in pod development and it's shattering under drought stress.

Disclosure statement

The authors declare that they have no conflicts of interest to report regarding the present study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.