Publication Cover
Ozone: Science & Engineering
The Journal of the International Ozone Association
Volume 29, 2007 - Issue 1
194
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

A Simple Model to Predict Formation of Bromate Ion and Hypobromous Acid/Hypobromite Ion through Hydroxyl Radical Pathway during Ozonation

, &
Pages 3-11 | Received 28 May 2004, Accepted 01 Jul 2005, Published online: 24 Jan 2007
 

Abstract

A simple model is developed to predict the formation of bromate ion as well as hypobromous acid/hypobromite ion through the hydroxyl radical pathway. For simplicity of the model, hydroxyl radical concentrations are represented by the concentration ratio of hydroxyl radical to dissolved ozone under the different pH conditions. A kinetic analysis is conducted to evaluate the ratio under the different pH conditions based on the experimental data. The different extent of the ratio by one pH unit is found to be 3–4 times. This model can favorably simulate the formations of bromate ion as well as hypobromous acid/hypobromite ion in spite of the simplicity of the model. So it is likely that this model will be applicable to the prediction of bromate ion formation in water purification process such as drinking water treatment by introducing the concentration ratio of hydroxyl radical to dissolved ozone.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 403.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.