107
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Investigation Static/Dynamic Surface and Interfacial Tension of Some Synthesized Polymeric Surfactants to Enhance the Egyptian Jet Fuel A1 Atomization

, , &
Pages 520-528 | Received 26 Dec 2007, Accepted 15 Jan 2008, Published online: 26 Mar 2009
 

Abstract

In the present work some exthoxylated polyalkylphenol surfactants have different alkyl chains (nonyl and dodecyl) were synthesized. The static surface tension for these surfactants in water and jet fuel A1 was measured and the critical micelle concentration (CMC) for each surfactant was determined. The data show the general trend of decreasing the CMC against the molecular weight of the synthesized polymeric surfactants. The HLB of these surfactants was also calculated. The dynamic surface tension for the synthesized surfactants was measured at CMC. The dynamic interfacial tension for these surfactants with jet fuel A1 at CMC was also measured using the spinning drop technique. The results showed that the effect of the synthesized surfactants on deceasing the time of droplet maturation was significant remarked. The decrease of this time leads to enhance of jet fuel atomization.

Notes

R = alkyl group, n = degree of polymerization (repeating unit).

∗En = Ethylene unit.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.