171
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and Scaling of Food Dispersions

, &
Pages 462-468 | Received 26 Feb 2012, Accepted 02 Mar 2012, Published online: 29 Mar 2013
 

Abstract

Scaling laws, determined by dimensional analysis, have been used to make experimental predictions of constitutive shear-flow rheology. This study aimed to scale and model the flow curves of various suspensions consisting of xanthan gum (0.5, 1 wt%) and WPI (2, 4 wt%), and to determine the best-scaling law and rheological model. The scaling methods were relative viscosity, Péclet number, and Reynolds number. When the apparent viscosity is reduced relative to the viscosity of the medium at zero-shear rate, a distinct reduced flow curve is obtained, regardless of xanthan and WPI concentrations. This study tough to develop a technique of simplifying complex non-Newtonian flow curves and, therefore, predicting the rheological flow curves and fluid mechanics when different modifiers are added to food suspensions. The flow behavior of all samples was successfully modeled with the power law, Ellis, and Cross models; the power law model best described the flow behavior of dispersions. Results showed that both G′ and G″ increased with xanthan and WPI. However, viscoelastic behavior was mainly governed by the xanthan gum content.

Acknowledgments

The authors offer special thanks to Ramin University for its scientific and logistic helps.

Notes

Determination Coefficient (R2), standard error (Sxy). Bold numbers indicate the highest and lowest R2 and Sxy values.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.