160
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Evaluation of New Demulsifiers Incorporating Linear Alkyl Benzene Moiety for Treating Water-in-Oil Emulsion

, , &
Pages 996-1007 | Received 29 Mar 2012, Accepted 24 Apr 2012, Published online: 27 Jun 2013
 

Abstract

In the present study, five types of water soluble demulsifiers based on linear alkyl benzene were prepared. The chemical structures of the prepared demulsifiers were elucidated using Fourier transform-infrared (FTIR) and 1H NMR spectra. Different factors affecting demulsification efficiency such as; water content, demulsifier concentration, hydrophilic lipophilic balance (HLB), and ethylene oxide unit were investigated. Also, the rheological properties in relation to demulsification efficiency were studied. The surface and thermodynamic parameters of the prepared demulsifiers were determined at 25°C including, surface tension (γ) and effectiveness, maximum surface excess (Γmax), and minimum surface area (Amin). From the obtained data, it was found that the demulsification efficiency increases with increasing the water content and concentration of the demulsifiers. Primarily evaluation study of demulsification performance of the new demulsifiers showed that as the ethylene oxide unit in the demulsifiers increase (10–40 ethylene oxide units), the performance of the demulsifiers increasing, however, it decrease in case of demulsifiers with (80 ethylene oxide unit).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.