97
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dilational Rheological Properties of P-(n-alkyl)-benzyl Polyoxyethylene Ether Carboxybetaine at Water–Decane Interface

, , , , , , & show all
Pages 430-440 | Received 14 Mar 2014, Accepted 07 Apr 2014, Published online: 17 Oct 2014
 

Abstract

The dilational rheological behaviors of absorbed films of p-(n-alkyl)-benzyl polyoxyethylene ether carboxybetaine CxBE2CB (x = 8, 10, 12) at the water–decane interface have been investigated by the drop-shape analysis method. The influences of time, oscillation frequency, and bulk concentration on dilational modulus and phase angle have been expounded. The experimental results show that the phase angle of CxBE2CB (x = 10, 12) decreases with the increase of time, the slope of the log ϵ − log ω curve and phase angle of CxBE2CB (x = 10, 12) decrease in a wide concentration range. These phenomena become more and more apparent with the increase of hydrocarbon chain length and it cannot be attributed to the diffusion-exchange process between the bulk and the interface. It is reasonable to consider that ethylene oxide groups are flexible and can be compressed and expanded, just like a spring. Therefore, the compression and expansion of the ethylene oxide groups in the interfacial layer and the exchange between interface and sublayer play a more important role for CxBE2CB (x = 10, 12) adsorption film. The dependence of dilational modulus on interfacial pressure can support our provided mechanism strongly.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.