208
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effective Viscosity for Dispersed Oil–Water Pipe Flow in Different Diameters

, &
Pages 1419-1431 | Received 01 Nov 2014, Accepted 16 Nov 2014, Published online: 05 May 2015
 

Abstract

Existing prediction models for the effective viscosity of emulsions are typically empirical relations tuned to experimental measurements. Experimental methods like the preparation of stirred oil–water mixtures for rheometers and the use of small-scale flow loops have been used to characterize emulsions. Nevertheless, the extrapolation of these small-scale results to large-scale real systems is still uncertain and deserves further attention. This work reports a study of the effect of the pipe diameter on the effective viscosity of water-in-oil emulsions. Pipe flow experiments were performed with water-in-oil surfactant stabilized emulsions in acrylic pipes with 16, 32, 60, and 90 mm ID. Salt water (3.5% w/v of NaCl, pH = 7.3) and the oils Exxsol D80 (µ = 1.8 mPa s) and Marcol 52 (µ = 10 mPa s) with 0.25% v/v of Span 80 (lipophilic surfactant, HLB = 4.3) were used in the experiments. Pressure drop and droplet sizes were measured for different water fractions and mixture velocities. The effective viscosities calculated from pressure drop results were similar in all pipes up to about 40% water cut. Above 40%, the difference in effective viscosity increases with water cut, being significantly higher for the larger diameters.

GRAPHICAL ABSTRACT

ACKNOWLEDGMENTS

The authors gratefully acknowledge Bjørnar Pettersen and Statoil for the FBRM probe.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.