787
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Facile Spray-Coating for Fabrication of Superhydrophobic SiO2/PVDF Nanocomposite Coating on Paper Surface

&
Pages 640-645 | Received 15 May 2015, Accepted 17 May 2015, Published online: 19 Jan 2016
 

Abstract

A facile and low-cost superhydrophobic nanocomposite coating on paper surface was fabricated through one-step simply spraying dispersion, using hydrophobic silica nanoparticles as a filter (SiNPs) and polyvinylidene fluoride (PVDF) as a film-forming material. Hydrophobic SiNPs were fabricated via co-hydropholysis and condensation of TEOS and long-chain alkyl silane based on a simple sol-gel process, and the surface chemical structure of SiNPs was characterized by Fourier transform infrared (FTIR) spectra. The wettability and morphology of the coating surface were measured by contact angle (CA) measurement and scanning electron microscope, respectively. The influence of the mass ratio of hydrophobic SiNPs to PVDF (M(SiNPs:PVDF)) on the superhydrophobicity of paper surface was studied. The results showed that when M(SiNPs:PVDF) was 3:1, the water CA was 156.0 ± 1.0° for the nanocomposite coating with micro/nano-hierarchical structure on paper surface. Further, such superhydrophobic nanocomposite coatings on paper surface showed little adhesive property with water. In addition, the prepared superhydrophobic nanocomposite coating could be applied in other substrates, such as wood, aluminum sheet, stainless steel, polytetrafluoroethylene (PTFE), etc.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.