657
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Adsorptive removal of malachite green and Rhodamine B dyes on Fe3O4/activated carbon composite

, , &
Pages 1556-1562 | Received 19 Oct 2016, Accepted 16 Nov 2016, Published online: 16 Mar 2017
 

ABSTRACT

This study demonstrates the adsorption experiments of toxic dyes malachite green (MG) and Rhodamine B (RB) on Fe3O4-loaded activated carbon (AC). AC, which is known to be a high-capacity adsorbent, was aimed to be easily separated from aqueous media by loading it with Fe3O4. Fe3O4-loaded AC was prepared by the coprecipitation method and named magnetic activated carbon (M-AC), and the produced M-AC was characterized by x-ray diffraction (XRD), thermogravimetric analysis (TGA), and pHpzc analyses. MG and RB adsorption by the M-AC was performed separately by batch technique and the effects of adsorbent amount, solution pH, and initial dye concentration on the adsorption were explored. Maximum removal efficiencies were found to be 96.11% for MG and 98.54% for RB, and the Langmuir isotherm model was the most fitted isotherm model for the adsorption. The kinetic and thermodynamic studies showed that the adsorption proceeded via the pseudo-second-order kinetic model and endothermic in-nature for both dyes.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.