214
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

CO2-switchable vesicles-network structure transition and drug release property

, , , , &
Pages 1309-1315 | Received 28 Sep 2017, Accepted 22 Oct 2017, Published online: 27 Nov 2017
 

ABSTRACT

A series of amphiphilic triblock polymers based on poly(ethylene glycol) (PEG) and two symmetrical poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) blocks was synthesized via the Atom Transfer Radical Polymerization (ATRP) method. Conductivity, pH, and viscosity tests demonstrated the CO2-switchability jointly; Cryogenic transmission electron microscopy (Cryo-TEM), Dynamic light scattering (DLS) revealed the self-assembly morphology transformation from unilamellar vesicle to network structure when bubbling CO2. These changes were all attributed to the protonation of tertiary amine groups in PDMAEMA blocks and the mechanism was proved by H NMR. The vesicles have a relatively low release rate of drug; once stimulated by CO2, the release rate will be accelerated. The polymeric vesicle has the possibility to find potential applications in drug delivery and release domains.

GRAPHICAL ABSTRACT

Additional information

Funding

This work was supported by the Scientific Research Innovation Team Project of Provincial Universities in Sichuan Province (No. 13TD0025), State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. KF201305).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.