271
Views
32
CrossRef citations to date
0
Altmetric
Research Articles

Dynamics of thermal Marangoni stagnation point flow in dusty Casson nanofluid

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 707-715 | Received 06 May 2021, Accepted 15 Jul 2021, Published online: 08 Sep 2021
 

ABSTRACT

The current perusal presents a stagnation point (SP) flow and heat transfer analysis of Casson dusty nanofluid over a surface with Marangoni convection. Here, non-Newtonian nanoliquid suspended with Ti6Al4V as nanoparticle and dust particles in base fluid sodium alginate is utilized to scrutinize the present two-phase boundary layer model. Further, suitable transformations are used to reduce the modelled governing equations to a set of ordinary differential equations. Later, numerical solutions are secured using an efficient and well-known Runge-Kutta-Fehlberg fourth fifth-order (RKF-45) method using the shooting technique. The impacts of the governing parameters on various profiles are illustrated with the help of graphs. The significant findings of the current model are that the escalating values of the Marangoni number deteriorations the velocity gradient of both dusty nanoliquids. The augmentation of dust particle mass concentration declines the thermal gradient of both liquid and particle phases. The boost up values of dust particle mass concentration and thermal dust parameter advances the rate of heat transfer.

Disclosure statement

No potential conflict of interest was reported by the author(s).

This article is part of the following collections:
International Journal of Modelling and Simulation Best Paper Award

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.