Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 62, 2013 - Issue 1
132
Views
3
CrossRef citations to date
0
Altmetric
Articles

Contribution of copositive formulations to the graph partitioning problem

Pages 71-83 | Received 03 Nov 2009, Accepted 16 Dec 2010, Published online: 27 Jul 2011
 

Abstract

This article provides analysis of several copositive formulations of the graph partitioning problem and semidefinite relaxations based on them. We prove that the copositive formulations based on results from Burer [S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120 (Ser. A) (2009), pp. 479–495] and the author of the paper [J. Povh, Semidefinite approximations for quadratic programs over orthogonal matrices. J. Global Optim. 48 (2010), pp. 447–463] are equivalent and that they both imply semidefinite relaxations which are stronger than the Donath–Hoffman eigenvalue lower bound [W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs. IBM J. Res. Develop. 17 (1973), pp. 420–425] and the projected semidefinite lower bound from Wolkowicz and Zhao [H. Wolkowicz and Q. Zhao, Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. 96–97 (1999), pp. 461–479].

Acknowledgments

This project was partially supported by the Slovenian research agency under contracts 1000-08-210518.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 630.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.