Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 65, 2016 - Issue 4
178
Views
2
CrossRef citations to date
0
Altmetric
Articles

Tightening concise linear reformulations of 0-1 cubic programs

Pages 877-903 | Received 27 Aug 2013, Accepted 20 Aug 2015, Published online: 07 Oct 2015
 

Abstract

A common strategy for solving 0-1 cubic programs is to reformulate the non-linear problem into an equivalent linear representation, which can then be submitted directly to a standard mixed-integer programming solver. Both the size and the strength of the continuous relaxation of the reformulation determine the success of this method. One of the most compact linear representations of 0-1 cubic programs is based on a repeated application of the linearization technique for 0-1 quadratic programs introduced by Glover. In this paper, we develop a pre-processing step that serves to strengthen the linear programming bound provided by this concise linear form of a 0-1 cubic program. The proposed scheme involves using optimal dual multipliers of a partial level-2 RLT formulation to rewrite the objective function of the cubic program before applying the linearization. We perform extensive computational tests on the 0-1 cubic multidimensional knapsack problem to show the advantage of our approach.

AMS Subject Classifications:

Notes

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 630.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.