Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Latest Articles
201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Portfolio reshaping under 1st-order stochastic dominance constraints by the exact penalty function methods

ORCID Icon & ORCID Icon
Received 31 Jan 2023, Accepted 21 Jan 2024, Published online: 09 Feb 2024

Figures & data

Figure 1. Possible (disconnected and non-convex) shapes of feasible sets under 1st-order SDC (xref=(x1=0.31,x2=0.69), δ=0.05,0,0).

Figure 1. Possible (disconnected and non-convex) shapes of feasible sets under 1st-order SDC (xref=(x1=0.31,x2=0.69), δ=0.05,0,0).

Figure 2. Illustration of the smoothing method performance on two asset (1,2) portfolio selection. Examples of the trajectories of the method for different discontinuous penalties. xref=(x1=0.3,x2=0.7), δ=0.05.

Figure 2. Illustration of the smoothing method performance on two asset (1,2) portfolio selection. Examples of the trajectories of the method for different discontinuous penalties. xref=(x1=0.3,x2=0.7), δ=0.05.

Figure 3. Illustration of the smoothing method performance on two asset (4,9) portfolio selection. Example of the trajectory of the method for non-connected feasible set. xref=(x4=0.3,x9=0.7), δ=0.05. The green is the starting point, the red is the final one.

Figure 3. Illustration of the smoothing method performance on two asset (4,9) portfolio selection. Example of the trajectory of the method for non-connected feasible set. xref=(x4=0.3,x9=0.7), δ=0.05. The green is the starting point, the red is the final one.

Figure 4. Profiles of optimal 3 component portfolios: maximizing the tail returns under the risk-return lower bound. Discontinuous penalties. 1) Optimal average return. 2) Optimal V@R40%. 3) Optimal AV@R40%; cf. Table .

Figure 4. Profiles of optimal 3 component portfolios: maximizing the tail returns under the risk-return lower bound. Discontinuous penalties. 1) Optimal average return. 2) Optimal V@R40%. 3) Optimal AV@R40%; cf. Table 1.

Figure 5. Profiles of optimal 3 component portfolios: maximizing the tail returns under the risk-return lower bound. Analytical projective penalties. (1) Optimal average return. (2) Optimal V@R0.4. (3) Optimal AV@R0.4. See Table .

Figure 5. Profiles of optimal 3 component portfolios: maximizing the tail returns under the risk-return lower bound. Analytical projective penalties. (1) Optimal average return. (2) Optimal V@R0.4. (3) Optimal AV@R0.4. See Table 2.

Table 1. Optimal 3 component portfolios, discontinuous penalties: (1) Max mean; (2) Max V@R; (3) Max AV@R.

Table 2. Optimal 3 component portfolios, analytical projection: (1) Max mean. (2) Max V@R40%. (3) Max AV@R40%.

Figure 6. Profiles of optimal 3 component portfolios: maximizing the tail returns under the risk-return lower bound. Analytical projective penalties. (1) Optimal average return. (2) Optimal V@R70%. (3) Optimal AV@R70%. See Table .

Figure 6. Profiles of optimal 3 component portfolios: maximizing the tail returns under the risk-return lower bound. Analytical projective penalties. (1) Optimal average return. (2) Optimal V@R70%. (3) Optimal AV@R70%. See Table 3.

Figure 7. Profiles of optimal 10 component portfolios: maximizing the tail returns under the risk-return lower bound. Analytical projective penalties. (1) optimal average return; (2) optimal V@R70%; (3) optimal AV@R70%; cf. Tables  and .

Figure 7. Profiles of optimal 10 component portfolios: maximizing the tail returns under the risk-return lower bound. Analytical projective penalties. (1) optimal average return; (2) optimal V@R70%; (3) optimal AV@R70%; cf. Tables 4 and 5.

Table 3. Optimal 3 component portfolios, analytical projection: (1) Max mean. (2) Max V@R. (3) Max AV@R.

Table 4. Optimal 10 component portfolios, analytical projection: (1) Max mean. (2) Max V@R. (3) Max AV@R.

Table 5. The optimal 10 component portfolio.

Table A1. Return data set from [Citation62, Table 1, page 13], with artificial bond column.