1,129
Views
14
CrossRef citations to date
0
Altmetric
Papers

Power variation strategies for cycling time trials: A differential equation model

Pages 651-659 | Received 08 Oct 2010, Accepted 01 Jan 2012, Published online: 20 Feb 2012
 

Abstract

In cycling time trials, competitors aim to ride a course in the fastest possible time and the implementation of a pacing strategy is therefore essential. In this study, a differential equation model of a cyclist incorporating continuous changes in velocity is formulated and applied to a selection of theoretical courses and athletes. The model is augmented with a constraint corresponding to a mean work rate and various pacing strategies are considered. The inclusion of continuous accelerations experienced by the cyclist forms an essential component in a model for courses comprising many changes of gradient, and a steady-state approximation, which has previously been used to assess pacing strategies, is not suitable. In addition to formulating a result on the mathematically optimal solution of the model equations subject to the mean power constraint, it is also shown that substantial time savings can be realized by cyclists increasing their work rates on uphill sections and suitably reducing their work rates elsewhere. However, the amount of time saved is highly course- and athlete-dependent with the greatest gains arising on courses with the longest continuous ascents by cyclists of greatest mass.

Acknowledgements

The author wishes to thank two anonymous referees for their extremely useful suggestions in improving an earlier version of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.