10,299
Views
54
CrossRef citations to date
0
Altmetric
Original Articles

Determinants of countermovement jump performance: a kinetic and kinematic analysis

, &
Pages 1805-1812 | Accepted 10 May 2014, Published online: 29 May 2014
 

Abstract

This study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique. Participants also completed a series of isometric knee extensions to measure the rate of torque development and peak torque. CMJ height ranged from 0.38 to 0.73 m (mean 0.55 ± 0.09 m). CMJ peak knee power, peak ankle power and take-off shoulder angle explained 74% of this observed variation. CMJ kinematic (58%) and CMJ kinetic (57%) parameters explained a much larger proportion of the jump height variation than the isometric parameters (18%), suggesting that coachable technique factors and the joint kinetics during the jump are important determinants of CMJ performance. Technique, specifically greater ankle plantar-flexion and shoulder flexion at take-off (together explaining 58% of the CMJ height variation), likely influences the extent to which maximal muscle capabilities can be utilised during the jump.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.