237
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Extraction recoveries and stability of diarrhetic shellfish poisoning (DSP) toxins in naturally contaminated samples

, , &
Pages 229-235 | Received 09 Apr 2008, Accepted 20 Jun 2008, Published online: 05 Feb 2009
 

Abstract

During the last few years the occurrence of a high percentage of esters of diarrhetic shellfish poisoning (DSP) toxins has been observed in shellfish from the Portuguese coast. Most of the commercial bivalves contain DSP toxins in ester forms, either acyl derivatives of okadaic acid (OA) or of dinophysistoxin-2 (DTX-2). The stability of these toxins in shellfish tissues and in raw methanol extracts was investigated in two different naturally contaminated species, mussel and carpet shell, over a 4-week period. The results for both species revealed that DSP toxins were more stable in tissue than in raw methanol extracts. Losses of DSP toxins were seen in the first 2 weeks and were more than 30%, but after that a period of stabilization was observed. The decrease was due probably from losses of esters of OA and DTX-2, the free toxins were stable over the period studied. The extraction most commonly used for chemical and biochemical assays relied on methanolic extraction with aqueous 80% methanol. In this work we have tested the extraction solvent on the extractability of DSP toxins from several naturally contaminated species. A single dispersive extraction with methanol, with solvent ratios of 70%, 80%, 90% and 100%, were tested. After alkaline hydrolysis of esterified toxins and clean-up with hexane and dichloromethane, the samples were analysed by liquid chromatography-mass spectrometry (LC-MS). The recovery of DSP toxins increased with increasing percentages of methanol up to 90%. A decrease in recovery with 100% methanol was observed probably due to problems during the liquid–liquid partitioning.

Acknowledgements

The ‘Safety, Surveillance and Quality of Bivalve Molluscs’ (QCAIII/med.4/MARE) Programme supported this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.