364
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample

, &
Pages 25-40 | Received 09 Feb 2008, Published online: 04 Jan 2010
 

Abstract

The power function distribution is often used to study the electrical component reliability. In this paper, we model a heterogeneous population using the two-component mixture of the power function distribution. A comprehensive simulation scheme including a large number of parameter points is followed to highlight the properties and behavior of the estimates in terms of sample size, censoring rate, parameters size and the proportion of the components of the mixture. The parameters of the power function mixture are estimated and compared using the Bayes estimates. A simulated mixture data with censored observations is generated by probabilistic mixing for the computational purposes. Elegant closed form expressions for the Bayes estimators and their variances are derived for the censored sample as well as for the complete sample. Some interesting comparison and properties of the estimates are observed and presented. The system of three non-linear equations, required to be solved iteratively for the computations of maximum likelihood (ML) estimates, is derived. The complete sample expressions for the ML estimates and for their variances are also given. The components of the information matrix are constructed as well. Uninformative as well as informative priors are assumed for the derivation of the Bayes estimators. A real-life mixture data example has also been discussed. The posterior predictive distribution with the informative Gamma prior is derived, and the equations required to find the lower and upper limits of the predictive intervals are constructed. The Bayes estimates are evaluated under the squared error loss function.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 549.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.