204
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Nematic viscosity estimation using director kickback dynamics

, &
Pages 981-987 | Received 21 Mar 2011, Accepted 13 May 2011, Published online: 12 Aug 2011
 

Abstract

The coupling between director rotation and bulk flow of a liquid crystal can cause many interesting, and often unwanted, effects. The associated ‘backflow’ and director ‘kickback’ have been observed and modelled over a number of years and have been used in the determination of nematic elastic constants and viscosities, usually through complicated fitting procedures. In this paper we develop a simple model of the flow and director dynamics during switch-off in a standard Freedericksz cell which, together with the classical switch-on dynamics, can be used to develop a relatively accurate, computationally inexpensive, two-mode fitting procedure capable of estimating splay and bend elastic constants, cell thickness and two combinations of the nematic viscosities. We do this by using an eigenfunction expansion for the director dynamics equation together with an analytical expression for the coefficients of the relaxing modes. This allows a simple estimation for the maximum director angle during kickback and the time after which the director has recovered to its initial state, which are comparable with a full numerical simulation, and leads to confidence in the accuracy of a two-mode eigenfunction expansion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.