330
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Real-time and sensitive detection of lipase using liquid crystal droplet patterns supported on solid surfaces

&
Pages 597-602 | Received 07 Oct 2013, Accepted 18 Nov 2013, Published online: 06 Dec 2013
 

Abstract

In this study, we demonstrate a real-time and sensitive strategy for monitoring of lipase activity using liquid crystal (LC) droplets with micrometre scales supported on solid surfaces. The LC droplet pattern was formed by evaporating a solution of nematic LC, 4-cyano-4′-pentylbiphenyl (5CB) dissolved in heptane. The surface-anchored LC droplets displayed a bright fan-shaped appearance in buffer solution, while they exhibited a dark cross appearance when they were in contact with an aqueous mixture of glycerol trioleate (GT) and lipase. Due to adsorption of the released oleic acid generated from the enzymatic reaction between GT and lipase, LCs adopted a perpendicular orientation instead of planar orientation at the aqueous/LC droplet interface, resulting in contrasting optical response. Using this approach, the presence of 0.1 μg/mL lipase in the aqueous solution could be detected within 6 min. When compared to previously reported LC-based sensors for the detection of lipase, this simple and convenient method has the advantage of real-time monitoring of lipase activity with high sensitivity. In addition, this strategy also has high potential for application of the LC droplet pattern for sensing applications.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.