278
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis and properties of organic–inorganic hybrid liquid crystal gels

, , , &
Pages 1616-1625 | Received 25 Feb 2016, Accepted 16 May 2016, Published online: 05 Jun 2016
 

ABSTRACT

Organic–inorganic hybrid liquid crystal (LC) gels have been synthesised by the thiol-ene reaction of a multifunctional cyclic siloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (TVMCTS) and alkane dithiols, 1,6-hexanedithiol (HDT) or 1,9-decanedithiol (DDT), in LC matrices, 4-cyano-4ʹ-pentylbiphenyl (5CB) or 4′-n-octyl-4-cyano-biphenyl (8CB). The LC gels were prepared in an isotropic phase at 70°C or mesophases at 25°C using radical initiators. The phase transition temperatures from a mesophase to an isotropic phase of the resulting gels were lower than those of the original LCs. The gels containing 8CB (8CB gels) prepared at 25°C showed two phase transitions: smectic-to-nematic and nematic-to-isotropic transitions. By contrast, the 8CB gels synthesised in the isotropic phase showed only one phase transition from smectic phase directly to isotropic phase. Reaction conversions in the LC gels prepared at 70°C were higher than that in the gels prepared at 25°C. Scanning microscopic light scattering analysis of the LC gels cleared homogeneous small size mesh with a small amount of large defect. Polarisation micrographs of the LC gels showed framed optical textures derived from the LC molecules at room temperature. The LC gels containing more than 90 wt% of LC showed electro-optic response.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.