630
Views
14
CrossRef citations to date
0
Altmetric
Articles

Elastic constants, viscosity and dielectric properties of bent-core nematic liquid crystals doped with single-walled carbon nanotubes

, , , , &
Pages 784-797 | Received 28 Jul 2016, Accepted 25 Sep 2016, Published online: 18 Oct 2016
 

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are dispersed in (4’-fluoro phenyl azo) phenyl-4-yl 3-[N-(4’-n-hecyloxy 2-hydroxybenzylidene)amino]-2-methylbenzoate (6–2M-F) a bent-core nematic (BCN) liquid crystalline medium composed of bent-shaped molecules with short core, reduced bend angle possessing polar fluoro substituent in longitudinal direction and methyl group in bent direction. Such molecules are at the borderline of typical bent-core and rod-like molecules resembling hockey stick shape with intermediate properties. The elastic anisotropy is negative for 6–2M-F (bend elastic constant K33 < splay elastic constant K11); similar to other BCNs reported earlier with smectic-like clusters; but turns to high positive (K33 > K11) value by insertion of SWCNT (concentration ≥0.05 wt.%) in 6–2 M-F. The ratio of K33/K11 becomes comparable to the calamitic liquid crystals (LCs) in doped system. Dielectric anisotropy increases in the nanocomposite implying enhanced nematic ordering due to ππ electron interaction between CNTs and the LC molecules. Threshold voltage at first increases and then decreases with increasing CNT concentration owing to the respective variations in splay viscosity of the system. The present study demonstrated the interaction of SWCNTs with BCN molecules and reveals significant modifications in viscoelastic, dielectric and ionic properties of the host.

Graphical Abstract

Acknowledgements

S.T. acknowledges University Grants Commission India. S.G. is grateful to the Department of Science and Technology, India for supporting this work under INSPIRE Faculty award (IFA-13, PH-60) scheme.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Additional information

Funding

This work was supported by the Department of Science and Technology, India [IFA-13, PH-60] and University Grants Commission, India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.