105
Views
5
CrossRef citations to date
0
Altmetric
Invited Article

Orientational ordering of nanorods of different length in diblock copolymers

, , &
Pages 2065-2073 | Received 18 May 2018, Accepted 29 Aug 2018, Published online: 20 Sep 2018
 

ABSTRACT

Orientational and positional ordering of nanorods in the lamellae phase of diblock copolymers has been investigated using a simple theoretical model and dissipative dynamics simulations. Orientational order parameter and local concentration profiles of nanorods are calculated numerically and extracted from computer simulations data for different values of the nanoparticle length and different number of the interaction sites in the model nanorod. The predictions of the molecular theory are compared with the results of computer simulations. It has been found that the nanorods are orientationally ordered in the boundary region between the domains and the orientational order parameter changes its sign at the domain wall. At the same time there exists some quantitative discrepancy between theory and computer simulations which is partially removed when a similar model of a nanorod is employed both in the molecular theory and in coarse-grained molecular dynamics simulations.

Graphical Abstract

Acknowledgments

The study was carried out within the state assignment of the Federal Agency for Scientific Organizations (FASO Russia) for TIPS RAS.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.