230
Views
7
CrossRef citations to date
0
Altmetric
Article

Polymorphic transitions mediated by surfactants in liquid crystal nanodroplet

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1428-1439 | Received 11 Sep 2018, Accepted 18 Jan 2019, Published online: 04 Feb 2019
 

ABSTRACT

Recently, various techniques have been developed using photonic crystals. Liquid crystals (LC) confined in a nanodroplet mimicked photonic crystals, such as those of opal. Therefore, investigating the phase behaviour of LC molecules in nanodroplets is very important in the next-generation optical field. In this study, the chemical interaction between surfactants and LCs in nanodroplets is reproduced using a dissipative particle dynamics method. We identify the phase behaviour of LCs and investigate how the chemical interaction affect on the orientation of LCs. In particular, by adding surfactant molecules, various morphological behaviours were observed in the LC nanodroplet. The phase transition temperature varied depending on RND (amount of surfactant molecules). Furthermore, difference of the self-assembly structure also appeared inside the droplet depending on RND. Our simulation offers a theoretical guide to control morphologies of self-assembled LCs inside a nanodroplet, a novel system that may find applications in nanofluidic devices or in photonic crystal technology.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Japan Society for the Promotion of Science [17K14610].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.