899
Views
60
CrossRef citations to date
0
Altmetric
Drug Delivery

Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro

, , &
Pages 264-274 | Received 28 Aug 2018, Accepted 03 Oct 2018, Published online: 19 Oct 2018
 

ABSTRACT

Purpose: Current standard of care for neovascular eye diseases require repeated intravitreal bolus injections of anti-vascular endothelial growth factors (anti-VEGFs). The purpose of this study was to validate a degradable microsphere-thermoresponsive hydrogel drug delivery system (DDS) capable of releasing bioactive aflibercept in a controlled and extended manner for 6 months.

Materials and Methods: The DDS was fabricated by suspending aflibercept-loaded poly(lactic-co-glycolic acid) microspheres within a biodegradable poly(ethylene glycol)-co-(l-lactic acid) diacrylate/N-isopropylacrylamide (PEG-PLLA-DA/NIPAAm) thermoresponsive hydrogel. Encapsulation efficiency of DDSs and in vitro release profiles were characterized by iodine-125 radiolabeled aflibercept. The degradation of hydrogel was determined by dry weight changes. The cytotoxicity from degraded DDS byproducts was investigated by quantifying cell viability using LIVE/DEAD® assay. In addition, dot blot and enzyme-linked immunosorbent assay were used to determine the bioactivity of released drug. Finally, morphology of microspheres and hydrogel were investigated by cryo-scanning electron microscopy before and after thermal transformation.

Results: The microsphere-hydrogel DDS was capable of releasing bioactive aflibercept in a controlled and extended manner for 6 months. The amount and rate of aflibercept release can be controlled by both the cross-linker concentration and microspheres load amount. The initial burst (release within 24 h) was from 37.35 ± 4.92 to 74.56 ± 6.16 µg (2 and 3 mM hydrogel, each loaded with 10 and 20 mg/ml of microspheres, respectively), followed by controlled drug release of 0.07–0.15 µg/day. Higher PEG-PLLA-DA concentration (3 mM) degraded faster than the lower concentration (2 mM). No significant cytotoxicity from degraded DDS byproducts was found for all investigated time points. Bioactivity of released drug was maintained at therapeutic level over entire release period.

Conclusions: The microsphere-hydrogel DDS is safe and can deliver bioactive aflibercept in a controlled manner. This may provide a significant advantage over current bolus injection therapies in the treatment of ocular neovascularization.

Acknowledgments

The authors would like to thank Dr Brianna Roux and Mr Feipeng Yang for providing and assistance in culturing the HUVECs. In addition, the cryo-SEM images in this work made use of the BioCryo facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. It also made use of the CryoCluster equipment, which has received support from the MRI program (NSF DMR-1229693). This research was supported by the NIH/NEI (EY025434) research grant (JJKM).

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The cryo-SEM images in this work made use of the BioCryo facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. It also made use of the CryoCluster equipment, which has received support from the MRI program (NSF DMR-1229693). This research was supported by the NIH/NEI (EY025434) research grant (JJKM).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.