310
Views
5
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of hydrodynamic characteristics in a gas–solid fluidized bed

, , &
Pages 177-182 | Published online: 20 Apr 2016
 

ABSTRACT

The fluidization of quartz particles as bed materials in the fluidized bed has significant influences on the combustion and gasification of refused derived fuels. Three-dimensional (3-D) simulations and analyses are performed for Geldart B particles using the computational fluid dynamics (CFD) method based on the kinetic theory of granular flows (KTGF) to investigate the hydrodynamic behavior. The drag models of Syamlal–O’Brien, Gidaspow, and Wen and Yu are selected to analyze the applicability of the kinetic model. The pressure drop, velocity distribution and solid volume fraction are studied numerically when the gas inlet velocity is changed. The results show that the increase of superficial gas velocity would lead to heterogeneous expansion of solid volume fraction and velocity distributions in both the dense phase zone and free board with a similar distribution pattern. The near wall particles form a dense phase structure with the solid volume fraction being greater than 0.3.

Additional information

Funding

We are grateful to the National Basic Research Development Program of China (973 Program-2011CB201506) for the financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.