129
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Study on the flow behavior of irregular plastic particles in a spout-fluid bed with a draft tube

, , &
Pages 945-954 | Published online: 14 Jul 2017
 

ABSTRACT

This work presents an experimental investigation on the hydrodynamic performance of a draft tube spout-fluid bed with irregular particles. Nonmetal particles from waste printed circuit boards (NPCBs) were used as a spouting solid, and polypropylene (PP) particles were selected as an assistant to fluidization particles. The flow pattern, minimum spouting velocity (Ums), and minimum spout-fluidization velocity (Umsf) were investigated under different operating conditions. The irregular cohesive particles from NPCBs showed poor flowability and channeling, which restrained stable spouting in the spout-fluid bed. The quality of fluidization and spouting improved when greater than 40 wt.% PP particles were added into the NPCB/PP mixtures. The mechanism was that the PP particles accelerated the movement of NPCB particles. Meanwhile, lower density differences between NPCB and PP particles decreased the segregation of the mixtures. The minimum spouting velocity decreased with an increase in fluidization gas velocity and the ratio of NPCB particle in the NPCB/PP mixtures. Two flow patterns, unstable spouting and unstable spouting fluidization, were observed over a large range of gas velocity. The ranges of gas velocity in these two flow patterns enlarged with the increase in mass fraction of NPCB particles within the NPCB/PP mixtures.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.