332
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A CFD-based surrogate model for predicting slurry pipe flow pressure drops

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 432-442 | Published online: 22 Aug 2022
 

Abstract

Slurry pipelines are extensively employed in most mining operations to transport raw materials and tailings. The aim of the paper is twofold: on the one hand, to develop a generalized slurry flow model using computational fluid dynamics (CFD) to develop a better insight into the complexity of slurry pipe flows, and on the other hand, to develop a surrogate model for pressure drop predictions, which can be used in operations simulation and monitoring tools. A two-fluid model based on the Eulerian-Eulerian approach along with the SST k-ω turbulence model was used. The motion of the solid phase was modeled by the kinetic theory of granular flow (KTGF) to account for both particle-particle and particle-wall interactions. The model was validated by comparison with experimental data available in literature. A new two-phase pressure drop correlation is proposed based on the numerical computations of horizontal pipes featuring 525 data points.

Acknowledgements

The authors gratefully acknowledge the support and computing resources from the African Supercomputing Center (ASCC) and SIMLAB HPC center at UM6P (Morocco).

Additional information

Funding

This work was supported by OCP Group (Morocco).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.