289
Views
16
CrossRef citations to date
0
Altmetric
ARTICLE

Simulation Modeling to Explore the Effects of Length-Based Harvest Regulations for Ictalurus Fisheries

, &
Pages 1190-1204 | Received 01 Feb 2016, Accepted 16 Jun 2016, Published online: 13 Sep 2016
 

Abstract

Management of Blue Catfish Ictalurus furcatus and Channel Catfish I. punctatus for trophy production has recently become more common. Typically, trophy management is attempted with length-based regulations that allow for the moderate harvest of small fish but restrict the harvest of larger fish. However, the specific regulations used vary considerably across populations, and no modeling efforts have evaluated their effectiveness. We used simulation modeling to compare total yield, trophy biomass (Btrophy), and sustainability (spawning potential ratio [SPR] > 0.30) of Blue Catfish and Channel Catfish populations under three scenarios: (1) current regulation (typically a length-based trophy regulation), (2) the best-performing minimum length regulation (MLRbest), and (3) the best-performing length-based trophy catfish regulation (LTRbest; “best performing” was defined as the regulation that maximized yield, Btrophy, and sustainability). The Btrophy produced did not differ among the three scenarios. For each fishery, the MLRbest and LTRbest produced greater yield (>22% more) than the current regulation and maintained sustainability at higher finite exploitation rates (>0.30) than the current regulation. The MLRbest and LTRbest produced similar yields and SPRs for Channel Catfish and similar yields for Blue Catfish; however, the MLRbest for Blue Catfish produced more resilient fisheries (higher SPR) than the LTRbest. Overall, the variation in yield, Btrophy, and SPR among populations was greater than the variation among regulations applied to any given population, suggesting that population-specific regulations may be preferable to regulations applied to geographic regions. We conclude that LTRs are useful for improving catfish yield and maintaining sustainability without overly restricting harvest but are not effective at increasing the Btrophy of catfish.

Received February 1, 2016; accepted June 16, 2016

ACKNOWLEDGMENTS

We thank Steve Miranda for constructive comments that improved this manuscript. Financial support for this publication was provided by Oklahoma State University and the Oklahoma Cooperative Fish and Wildlife Research Unit (the U.S. Geological Survey, Oklahoma State University, Oklahoma Department of Wildlife Conservation, Wildlife Management Institute, and U.S. Fish and Wildlife Service cooperating). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.