141
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Ag–TiO2 doped photo catalytic degradation of Procion blue H-B dye in textile washwater

&
Pages 1423-1434 | Received 02 Jul 2009, Accepted 02 Jan 2010, Published online: 19 Aug 2010
 

Abstract

The photocatalytic degradation of Procion blue H-B dye in biodegraded textile washwater has been investigated for the complete removal of color and maximum reduction of chemical oxygen demand (COD). Pseudomonas putida was utilized for obtaining biodegraded textile washwater. In this process, silver-doped TiO2 photocatalyst was prepared and experiments were carried out to study the effects of UV and mercury lamp irradiations on COD reduction and removal of color. The thus prepared silver-doped TiO2 catalyst was characterized by thermogravimetric and differential thermal analysis, UV-visible spectrometer, X-ray diffraction, scanning electron microscope, energy dispersive X-ray microanalysis, and BET surface area techniques. Adsorption studies were also carried out to evaluate the fitness of isotherm models. The results show that the silver-doped TiO2 has enhanced the photodegradation of Procion blue H-B dye under UV and mercury lamp irradiations. The enhanced activity of silver-doped TiO2 is due to the enrichment of electron–hole separation by electron trapping of silver particles.

Acknowledgment

The authors thank the Director, Central Electrochemical Research Institute, Karaikudi, for his kind encouragement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,970.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.