335
Views
16
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

Iron-doped copper 1,4-benzenedicarboxylate as photo-Fenton catalyst for degradation of methylene blue

, , , & ORCID Icon
Pages 13-25 | Received 19 Jun 2018, Accepted 28 Apr 2019, Published online: 17 May 2019
 

Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70 min under visible light irradiation at a solution pH of 6, a catalyst loading of 1 g L−1, a H2O2 dosage of 0.05 mol L−1 and methylene blue concentration of 50 mg L−1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.

Disclosure statement

The authors declare that there are no conflicts of interest regarding the publication of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,970.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.