252
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

The preparation of carboxymethyl cellulose from corncob residue and its effects on paper properties

ORCID Icon, , , &
Pages 149-157 | Published online: 15 Mar 2022
 

Abstract

In this study, corncob residue was treated in advance with different three methods in order to remove lignin. The treated fibers were characterized using Zeta potential, WRV, and FAS-VII fiber analysis methods. The lignin removal rates of the corncob residue treated with sodium hypochlorite were determined to reach up to 92.81%. The average fiber length was 0.65 mm, and the average width was 34.11 µm. In addition, the obtained cellulose was modified by carboxymethylation to prepare carboxymethyl cellulose. The results indicated that the carboxymethyl cellulose obtained from the corncob residue could significantly improve the properties of paper. For example, when 1% carboxymethyl cellulose was added, the burst index, tensile index, folding endurance, and tear index of the experimental paper were improved by 16.7%, 27.65%, 57.3%, and 18.2%, respectively, compared with the control. The results of this study’s SEM analysis showed that the addition of carboxymethyl cellulose from corncob residue resulted in the fibers becoming more tightly combined, which in turn led to the improvement of paper strength properties.

Additional information

Funding

This research was supported by the China Ministry of Science and Technology (2019YFB1503803-5).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 919.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.