873
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Graphical Analysis of the Performance of Venturi Scrubbers for Particle Abatement. Part II: Size Distribution of Penetrating Particles

&
Pages 63-74 | Received 08 Dec 2005, Accepted 09 Nov 2006, Published online: 11 Jan 2007

Figures & data

FIG. 1 Normalized cumulative weight distributions of penetrating particles predicted by the Calvert theoretical model and optimally fitted by lognormal distributions.

FIG. 1 Normalized cumulative weight distributions of penetrating particles predicted by the Calvert theoretical model and optimally fitted by lognormal distributions.

FIG. 2 (a) Nomographs based on the Calvert formulation, for Bf = 1.4, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (b) Nomographs based on the Calvert formulation, for Bf = 1.6, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (c) Nomographs based on the Calvert formulation, for Bf = 1.9, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (d) Nomographs based on the Calvert formulation, for Bf = 2.3, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (e) Nomographs based on the Calvert formulation, for Bf = 3, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (f) Nomographs based on the Calvert formulation, for Bf = 4, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (g) Nomographs based on the Calvert formulation, for Bf = 6, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (h) Nomographs based on the Calvert formulation, for Bf = 16, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g .

FIG. 2 (a) Nomographs based on the Calvert formulation, for Bf = 1.4, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (b) Nomographs based on the Calvert formulation, for Bf = 1.6, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (c) Nomographs based on the Calvert formulation, for Bf = 1.9, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (d) Nomographs based on the Calvert formulation, for Bf = 2.3, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (e) Nomographs based on the Calvert formulation, for Bf = 3, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (f) Nomographs based on the Calvert formulation, for Bf = 4, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (g) Nomographs based on the Calvert formulation, for Bf = 6, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g . (h) Nomographs based on the Calvert formulation, for Bf = 16, yielding the output particle distribution parameters G c d pα and lnσ p as function of the input particle distribution parameters G c d mα and lnσ g .

FIG. 3 Algorithm for generating best-fit lognormal distribution parameters d p and σ p from cumulative weight fraction series computed through the use of Calvert and Yung et al. formulations.

FIG. 3 Algorithm for generating best-fit lognormal distribution parameters d p and σ p from cumulative weight fraction series computed through the use of Calvert and Yung et al. formulations.

FIG. 4 Nomograph yielding the fractional penetration parameter e 4B u P i (d i ), based on the Yung et al. efficiency formulation, as function of the parameters G u d iα and α0.5 B u.

FIG. 4 Nomograph yielding the fractional penetration parameter e 4B u P i (d i ), based on the Yung et al. efficiency formulation, as function of the parameters G u d iα and α0.5 B u.

FIG. 5 Nomographs based on the Yung et al. efficiency formulation, yielding the output particle distribution parameters lnd m /d p /d p /ln σ g and ln σ p /ln σ g , as function of parameters P/P i (d m ) and P/P i (d m σ g ).

FIG. 5 Nomographs based on the Yung et al. efficiency formulation, yielding the output particle distribution parameters lnd m /d p /d p /ln σ g and ln σ p /ln σ g , as function of parameters P/P i (d m ) and P/P i (d m σ g ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.