262
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of reusable cloth mask with nanoparticle filtration efficiency greater than 95%

, , , , & ORCID Icon
Pages 1075-1095 | Received 06 Jan 2022, Accepted 28 Aug 2022, Published online: 18 Oct 2022
 

ABSRACT

After the rapid spread of SARS-Cov-2 virus, the use of masks was suggested by the world health organization (WHO) to reduce the virus transmission, whose primary mode of transmission was suggested to be through respiratory droplets. The recommended face coverings were single use surgical and respirator masks made of non-woven materials. With the increased demand for masks worldwide, the environmental impacts of mask disposal and the pollution caused by microplastic fibers of the non-woven materials were presented. This challenge necessitates the need for the development of a novel reusable mask reducing the environmental effects, while providing the necessary personal protective properties. Based on the ASTM F2299 standard test method, the performance, i.e., particle-size dependent filtration efficiency and pressure drop were studied for 20 samples with multilayer knit fabrics of natural and synthetic fibers (inner layer of pure cotton, cotton-nylon and cotton-polyester, middle layer of Lycra, and outer layer of superhydrophobic polyester). The results show that all the samples had an efficiency of >94% and 87–99% for large (250 nm–1 μm) and small (100–250 nm) particles, respectively. The best performing structure has a material composition of 41% superhydrophobic polyester, 26% natural cotton, 24% nylon and 9% Lycra. The filtration efficiency, pressure drop, and quality factor for this sample are 97.8% (for 100 nm particles), 4.04 mmH2O/cm2 and 4.77 kPa−1, respectively. It was also demonstrated that the developed mask maintains its performance after 50 wash/dry cycles, verifying its reusability. It should be noted that charge neutralizer was not used in the experimental setup of this study which might have led to enhanced results for the filtration efficiency of small (100–250 nm) particles due to the dominance of electrostatic attraction. However, several samples were tested by the third-party company who uses a certified testing equipment based on ASTM F2299, and similar results were obtained.

Copyright © 2022 American Association for Aerosol Research

Additional information

Funding

This research was funded by the Natural Sciences and Engineering Research Council (NSERC)|MITACS (IT19249).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 165.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.